Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD
30=2х+8х
30=10х
х=3, первая сторона
4*3=12м, вторая сторона
ответ: 3см, 3см, 12см, 12см
3.Биссектриса угла А отсекает от прямоугольника равнобедренный треугольник АВЕ. Значит АВ=ВЕ=7см, ВС=7+3=10см. Периметр равен 2*(7+10)=34см.
ответ: периметр = 34см
4.Меньшая диагональ АС=24см
Угол А=60°
Меньшая диагональ делит ромб на 2 треугольника: АВС и АСD
Так как угол А= углу D= 60° , то треугольники равносторонние и сторона ромба =24 см
5.Периметр= 4а
а=46:4=11,5см
Площадь= а^2=11,5×11,5=132,25см^2