КМ и KN - отрезки касательных, проведенных из точки К к окружности с центром О. Найдите KM и KN, если ОК = 12см, ∠MКN = 120°. Без теоремы Пифагора Без обмана очень нужно!
Если заданы уравнения параллельных плоскостей Ax + By + Cz + D1 = 0 и Ax + By + Cz + D2 = 0, то расстояние между плоскостями можно найти, используя следующую формулу
d = |D2 - D1|
√(A² + B² + C²) .
Для этого уравнение второй плоскости надо привести к одинаковым коэффициентам с первой плоскостью.
5x-3y+z+3=0 и 5x-3y+z+3,5=0
d = |3-3.5|/√(25+9+1) = 0.5/√35 ≈ 0,08452.
Одинаковые расстояния от плоскостей 5x-3y+z+3=0 и 5x-3y+z+3,5=0 равны половине найденной величины. Тогда коэффициент D в уравнении срединной плоскости равен:
D = D1 + (0,08452/2)*√35 = 3 + 0,25 = 3,25.
ответ: 5x-3y+z+3,25=0.
Можно было просто найти среднее значении между D1 и D2 = (3+3,5)/2 = 3,25.
Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
Если заданы уравнения параллельных плоскостей Ax + By + Cz + D1 = 0 и Ax + By + Cz + D2 = 0, то расстояние между плоскостями можно найти, используя следующую формулу
d = |D2 - D1|
√(A² + B² + C²) .
Для этого уравнение второй плоскости надо привести к одинаковым коэффициентам с первой плоскостью.
5x-3y+z+3=0 и 5x-3y+z+3,5=0
d = |3-3.5|/√(25+9+1) = 0.5/√35 ≈ 0,08452.
Одинаковые расстояния от плоскостей 5x-3y+z+3=0 и 5x-3y+z+3,5=0 равны половине найденной величины. Тогда коэффициент D в уравнении срединной плоскости равен:
D = D1 + (0,08452/2)*√35 = 3 + 0,25 = 3,25.
ответ: 5x-3y+z+3,25=0.
Можно было просто найти среднее значении между D1 и D2 = (3+3,5)/2 = 3,25.