Теорема 1. В треугольнике против большей стороны лежит больший угол.
Доказательство. Пусть в треугольнике ABC сторона АВ больше стороны АС (рис.1, а).
Рис.1
Докажем, что ∠ С > ∠ В. Отложим на стороне АВ отрезок AD, равный стороне АС (рис.1, б). Так как AD < АВ, то точка D лежит между точками А и В. Следовательно, угол 1 является частью угла С и, значит, ∠ C > ∠ 1. Угол 2 — внешний угол треугольника BDC, поэтому Z 2 > Z В. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, ∠ С > ∠ 1, ∠ 1 = ∠ 2, ∠ 2 > ∠ B. Отсюда следует, что ∠ С > ∠ В.
Справедлива и обратная теорема (ее доказательство проводится методом от противного).
Теорема 2. В треугольнике против большего угла лежит большая сторона.
Из теоремы 1 вытекает
Следствие 1. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).
Доказательство следствия проводится методом от противного.
Из следствия 1 следует, что если три угла треугольника равны, то треугольник равносторонний.
Из теоремы 2 получаем
Следствие 3. В прямоугольном треугольнике гипотенуза больше катета.
С использованием теоремы 2 устанавливается следующая теорема.
Теорема 3. Каждая сторона треугольника меньше суммы двух других сторон.
Следствие 4. Для любых трех точек А, В и С, не лежащих на одной прямой, справедливы неравенства:
АВ < АС + СВ, АС < АВ + ВС, ВС < ВА + АС.
Чертим тр-к АВС с высотой ВН. Высота ВН=20. Боковые стороны равны ( АВ=ВС=25). Рассмотрим тр-к ВНС. По т.Пифагора (квадрат гипотенузы равен сумме квадратов катетов) можно найти НС. НС= Корень квадратный ( а под корнем пишем->) ВС(2 (в квадрате)) - ВН(2). Подставляем числа. НС= Корень квадратный 625-400 = корень квадратный 225. Следовательно, НС=15. Отсюда, основание АС=2*15=30. Формула площади тр-ка : S= 1/2*a*h, где а-основание, h-высота. Опять подставляем числа. S=1/2*30*20=300. ответ: 300.
синус угла В. =7*синус 150/10= 0,7*синус 30=0,35