1)Діагональ осьового перерізу циліндра дорівнює 8 см і утворює з площиною основи кут 30⁰. Знайдіть площу бічної поверхні циліндра.
А)24π см^2
Б) 48π см^2
В) 12π см^2
Г) 12 см^2
2)Знайдіть площу бічної поверхні зрізаного конуса, радіуси основ якого дорівнюють 6 см і 11 см, а твірна - 10 см.
А)180 см^2
Б)180π см^2
В)90π см^2
Г)90 см^2
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см