1) пусть x - это катет в левой части трапеции с острым углом 30°
пусть y - это катет в правой части трапеции с острым углом 60°
на них приходится 15 - 7 = 8см, следовательно, x + y = 8
выясним, как связаны x и y
tg60 = h / y => y = h / tg60 = h / √3
tg30 = h / x => x = h / tg30 = 3h / √3
заметим, что x > y в 3 раза
пусть x = 3a, y = a
тогда 3a + a = 8,
a = 2
следовательно, x = 6, y = 2
теперь через тот же тангенс найдем высоту трапеции:
tg60 = h / y => h = tg60 y = 2√3.
2) по теореме Пифагора найдем диагонали трапеции
d1 = sqrt(9² + (2√3)²) = √93
d2 = sqrt(13² + (2√3)²) = √181
Пусть диагонали AC и BD прямоугольника ABCD перпендикулярны и пересекаются в точке O. Диагонали прямоугольника равны и в точке пересечения делятся пополам, значит, OA=OB=OC=OD. Рассмотрим треугольники AOB и BOC. Треугольники являются прямоугольными и равны по двум катетам, поскольку AO=BO=CO. Тогда гипотенузы этих треугольников также равны, то есть, AB=BC. В прямоугольнике противоположные стороны равны, то есть, AB=CD, BC=AD. Но тогда все стороны прямоугольника равны, что и требовалось.