A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
Смотри вниз периодически.
а) DC║AB, AB ⊂ α ⇒ DC ║ α или DC ⊂ α.
Комментарий: если DC ⊂ α, то D, D₁ и C, C₁ совпадают, поэтому рассматривать дальше при этом условии не интересно.
б) (ADD₁) ∩ (DCC₁) = DD₁ т.к. DD₁ ⊂ (ADD₁) и DD₁ ⊂ (DCC₁) т.к.
D ∈ (DCC₁); DD₁ ║ CC₁ (по условию) и СС₁ ⊂ (DCC₁).
в) (ADD₁) ║ (BCC₁) т.к. AD ║ BC (как противоположные стороны параллелограмма); DD₁ ║ CC₁ (по условию); AD ∩ DD₁ ; BC ∩ CC₁ ;
AD, DD₁ ⊂ (ADD₁) и ВС, СС₁ ⊂ (BCC₁).
г) AD₁ ║ BC₁ т.к. AD₁ ⊂ (ADD₁); BC₁ ⊂ (BCC₁); (ADD₁) ║ (BCC₁) и
AD₁ , BC₁ ⊂ α.
д) Раз плоскость (β), которую нам надо провести параллельная (ADD₁), то она будет параллельная и (BCC₁) т.к. (ADD₁) ║ (BCC₁), отрезки заключённые между параллельными плоскостями на параллельных прямых равны, поэтому другие точки лежащие по середине DC и D₁C₁ будет принадлежать β, а по трём точкам можно провести плоскость.