Боковая поверхность правильной четырехугольной призмы имеет площадь 16 дм2.диагональ основания равна 4 корня из 2.найдите площадь сечения призмы,проходящего через диагонали двух смежных боковых граней,имеющих общую вершину
А) Параметры окружности получаем из её уравнения: - координаты центра (-1; 0), - радиус равен √9 = 3.
б) принадлежат ли данной окружности точки А (-2;3),В(2;3),С(1;0) ? Для этого надо подставить координаты точек в уравнение окружности и проверить - соблюдается ли равенство (x+2)^2+y^2=9. А: (-2+2)²+3² = 0+9 = 9 принадлежит. В: (2+2)²+3² = 16+9 = 25 ≠ 9 не принадлежит. С: (1+2)²+0² = 9 принадлежит.
в) АВ:(х+2)/4 = (у-3)/0. Так как координаты точек А и В по оси у равны между собой, то прямая АВ параллельна оси Ох и её уравнение у = 3.
Высота в равностороннем треугольнике является также медианой и биссектрисой, значит АД=ДС, угол АВД= углу ДВС. Равенства треугольников АВД и ВДС можно доказать по всем трем признакам равенства треугольников: 1)по двум сторонам и углу между ними: АВ=ВС из дано, сторона ВД общая и угол АВД равен углу ДВС 2)по стороне и двум прилежащим углам:сторона ДВ общая, углы АВД и ДВС равны, углы АДВ и ВДС равны и прямые, так как ВД - высота. 3) по трем сторонам: АВ=ВС из дано, сторона ВД одщая, и АД равно ДС, так как ВД это и медиана тоже.
в основании правильной четырехугольной призмы лежит квадрат. и она прямая.
значит все боковые грани равны, отсюда S/4 = s1 (s1 - площадь одной грани)
16/4 = 4 = s1
зная диагональ основания найдем ее сторону так как a√2 = d
4√2 = a√2, а = 4
s1 грани равно = а*b = (а сторона основания, b высота призмы)
4 = 4*b, b = 1
найдем диагональ грани по теореме пифагора: х" = 16+1, х = √17
на рисунке видно сечение: АВ1С
из этого треугольника найдем ее высоту L: L" = 17-8 =9
L = √9 = 3
s = h*a*1/2 = 3*4√2*1/2 = 6√2