Гомоте́тия (от др.-греч. ὁμός «одинаковый» + θετος «расположенный») — преобразование плоскости (или пространства), заданное центром O и коэффициентом {\displaystyle k\neq 0}k\neq 0, переводящее каждую точку {\displaystyle X}X в точку {\displaystyle X'}X' такую, что {\displaystyle {\overrightarrow {OX'}}=k{\overrightarrow {OX}}}\overrightarrow {OX'}=k\overrightarrow {OX}. При этом центр остаётся на месте. Гомотетию с центром O и коэффициентом k часто обозначают через {\displaystyle H_{O}^{k}}H_{O}^{k}.
Полное условие задачи: Один из острых углов прямоугольного треугольника равен 38°. Найдите острый угол между гипотенузой и биссектрисой прямого угла.
Пусть в треугольнике АВС ∠С = 90°, СМ - биссектриса. Рассмотрим ΔАСМ: ∠САМ = 38° по условию, ∠АСМ = 90° / 2 = 45° так как СМ биссектриса. ∠ВМС = ∠САМ + ∠АСМ = 38° + 45° = 83° так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Углом между прямыми считается меньший из образовавшихся углов, значит угол между гипотенузой и биссектрисой прямого угла 83°.
Гомоте́тия (от др.-греч. ὁμός «одинаковый» + θετος «расположенный») — преобразование плоскости (или пространства), заданное центром O и коэффициентом {\displaystyle k\neq 0}k\neq 0, переводящее каждую точку {\displaystyle X}X в точку {\displaystyle X'}X' такую, что {\displaystyle {\overrightarrow {OX'}}=k{\overrightarrow {OX}}}\overrightarrow {OX'}=k\overrightarrow {OX}. При этом центр остаётся на месте. Гомотетию с центром O и коэффициентом k часто обозначают через {\displaystyle H_{O}^{k}}H_{O}^{k}.