Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
ответ: А)Воланчик для бадминтона стоит-130 тенге,ракетка для бадминтона стоит-450.Сколько стоит всё вместе?
Б) Ракетка для бадминтона стоит-450.Сколько стоят 2 ракетки?
В) Ракетка для бадментона стоит-450,воланчик для бадминтона стоит-130. Сколько стоит два воланчика и одна ракетка?
Г) Ракетка стоит-450 тенге, воланчик стоит-130 тенге. Насколько ракетка стоит больше чем воланчик ?
Д)Воланчик стоит-130 тенге. Сколько стоят шесть воланчиков?
Е) Ракетка стоит-450, воланчик стоит – 130 тенге. Насколько больше ракетка стоит чем три воланчика?
Объяснение: