А) ; Б)
Объяснение:
В классической механике физические величины могут быть либо векторными либо скалярными
Векторные физические величины характеризуются числовым значением ( модулем ) и вектором направления а скалярные лишь числовым значением
теперь по порядку
А) Вес это сила с которой тело действует на опору или подвес ( Т.к сила это векторная физическая величина то и вес это также векторная физическая величина )
Б) Скорость характеризует быстроту перемещения тела в пространстве за единицу времени ( Т.к. скорость имеет как направление так и численное значение ( как и сила ) тогда это векторная физическая величина )
В) Расстояние...
В некотором смысле это степень удаленности объектов относительно некоторой системы отсчета
поэтому расстояние не может иметь вектор направления и характеризуется лишь числовым значением поэтому это скалярная физическая величина
Г) Температура . Прежде всего этот физический параметр термодинамической системы характеризующий скорость теплового движения ( колебания ) атомов и молекул вещества . Но я думаю как всем понятно температура не может иметь вектор направления и характеризуются лишь численным значением поэтому это также скалярная величина
Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно
4)36
Объяснение:
4) Пусть H и P - точки касания сторон ML и MK
Тогда по свойству отрезков касательных, проведенных к окружности из одной точки, LT = LH, KT = KP, MH = MP
ML + LK = MH + HL + LT + KT
MK = MP + PK = MH + KT ( KT = KP, MH = MP )
Если провести радиус OH, то OH⊥ML, также OT⊥ LK
∠MLK = 90°, ∠LHO = 90°, ∠OTL = 90°, поэтому LHOT - прямоугольник
Поскольку OT = OH (радиусы), то LHOT - квадрат, и HL = LT = OT = 3
Значит, MK = MH + KT = ML + LK - HL - LT = 21 - 3 - 3 = 15
P(ΔMLK) = ML + LK + MK = 21 + 15 = 36
3) BN = BK, AM = AK, CN = CM(свойство отрезков касательных)
Обозначим CN = CM = х
По теореме Пифагора AC^2 + BC^2 = AB^2
AC = CM + AM = CM + AK = x + 18
BC = CN + BN = CN + BK = x + 12
AB = BK + AK = 12 + 18 = 30
(x + 18)^2 + (x + 12)^2 = 30^2
x^2 + 36x + 324 + x^2 + 24x + 144 = 900
2x^2 + 60x - 432 = 0
x^2 + 30x - 216 = 0
(x + 36)(x - 6) = 0
x = 6 (x = - 36 <0 - не подходит)
AC = x + 18 = 6 + 18 = 24
BC = x + 12 = 6 + 12 = 18
P(ΔABC) = AB + BC + AC = 30 + 18 + 24 = 72
2) A, B, C - точки касания сторон KR, LR, KL
OA⊥KR, OB⊥LR(касательная ⊥ радиусу), ∠KRL прямой, поэтому RAOB - прямоугольник
OA = OB (радиусы), тогда RAOB - квадрат и RA = RB = AO = 8
AK = AC, RA = RB, LB = LC(отрезки касательных, проведенных к окружности из одной точки)
RK = RA + AK
RL = RB + BL
P(ΔRKL) = RK + RL + KL = RA + AK + RB + BL + KL = AR + RB + KL + CK + LC = AR + BR + KL + KL = AR + BR + 2KL = 8 + 8 + 2*35 = 86