Доказательство центральный угол равен… а) двойной величине дуги на которую он опирается; б) дуге, на которую он опирается; в) половине дуги на которую он опирается.
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
1) Расположим куб в системе координат так, как показано на рисунке. Точка А - совпадаем с началом координат. Тогда координаты вершин А(0;0;0) ; В(0;1:0) ; С(1; 1; 0) ; D(1; 0; 0) ; В₁(0;1;1) Координаты точки М (1; 1/2; 1/2) Координаты векторов Скалярное произведение равно 0, значит векторы ортогональны, прямые AM и B₁D перпендикулярны Найдем координаты середины отрезка В₁D - точки K K(1/2; 1/2;1/2) Найдем координаты середины отрезка АМ - точки Е E=(1/2; 1/4:1/4) ответ. 1) прямые АМ и В₁D перпендикулярны, угол между ними 90°.2) расстояние между серединами отрезков АМ и В₁D равно
Задача 2. ( см. рис. 2) В грани ОХZ - квадрат, все стороны которого 1. Диагональ квадрата ОВ имеет длину √2 и легко находится по теореме Пифагора 1²+1²=2² В прямоугольном треугольнике АВО угол АВО равен 30°, угол АОВ равен 90°, так как ось оу перпендикулярна плоскости ОХZ. В прямоугольном треугольнике против угла в 30° катет в два раза меньше гипотенузы. Пусть ОА=y, тогда АВ=2y По теореме Пифагора АВ²=АО²+ВО² (2y)²=y²+(√2)² ⇒ 3y²=2 ⇒ ответ.
Задача 3. Так как векторы а и b коллинеарны, то их координаты пропорциональны. Вектор a имеет координаты (6k; 8k;-7,5k), где k- коэффициента пропорциональности Так как угол между векторами a и j - тупой, значит их скалярное произведение отрицательно. Координаты вектора j - (0;1:0) Найдем скалярное произведение Так как k<0, то к=-2 ответ. Вектор a имеет координаты (6·(-2); 8·(-2);-7,5·(-2)=(-12; -16; 15)