Ромб АВСД, АC=D1=30, ВД=D2=40, АВ=ВС=СД=АД=25, точка пересечения диагоналей-
точка О.
Рассмотрим треугольник АВС. ВД перпендикулярно АС (диагонали ромба перпендикулярны и в точке пересечения делятся пополам). АВ=ВС (треугольник равносторонний), АС-основание, ВО-высота к сторне АС. Площадь треугольника равна половине произведения основаня на высоту. АС=30, высота ВО=40:2=20
S=(30*20)/2=300см2
Площадь данного треугольника можно найти также 1/2 умноженное на сторону
ВС=25 и высоту к ней АМ=h (где АМ-высота ромба и высота треугольника АВС)
S=(25*h)1/2=300
25h=600
h=600:25
h=24
высота ромба =24см
Так как биссектриса острого угла A прямоугольного треугольника ABC не может быть перпендикулярна BC, то биссектриса угла A и серединный перпендикуляр к BC имеют ровно одну общую точку.
Пусть N — середина BC. Рассмотрим окружность, описанную около треугольника ABC. Пусть серединный перпендикуляр к BC пересекает меньшую дугу BC в точке L (см. рисунок), тогда точка L является серединой этой дуги, ⌣BL = ⌣LC. Но тогда \angle BAL= \angle CAL как вписанные углы, опирающиеся на равные дуги, а отсюда AL — биссектриса \angle BAC. Но это означает, что точка L совпадает с точкой K, то есть с точкой пересечения серединного перпендикуляра к BC и биссектрисой \angle BAC. Заметим, что \angle BCL= \angle CBL как вписанные углы, опирающиеся на равные дуги.
Пусть \angle BCL= x. Четырехугольник ACLB — вписанный, поэтому \angle ACL плюс \angle ABL = 180 в степени circ, то есть 40 в степени circ плюс x плюс 90 в степени circ плюс x = 180 в степени circ , откуда x = 25 в степени circ. Так как точки K и L совпадают, \angle BCK = \angle BCL = 25 в степени circ.
ответ: 25°.
Раздел кодификатора ФИПИ: Углы в окружностях