1. Пусть х - один из вертикальных углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Вертикальные углы равны, тогда 2х - сумма двух вертикальных углов.
Получаем уравнение:
2x + 30° = 180° - x
3x = 150°
x = 50°
ответ: каждый из двух вертикальных углов равен 50°.
2. Пусть х - один из углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Получаем уравнение:
1/8 x + 3/4 (180° - x) = 90° |· 8
x + 6 (180° - x) = 720°
x + 1080° - 6x = 720°
5x = 360°
x = 72° - один из смежных углов.
180° - 72° = 108° - второй угол.
Разность данных углов:
108° - 72° = 36°
ответ: 36°.
3. ∠1 + ∠2 + ∠3 - ∠4 = 280° по условию задачи.
∠1 = ∠3 и ∠2 = ∠4 как вертикальные, значит
2 · ∠1 = 280°
∠1 = 140°
∠3 = ∠1 = 140°
∠2 = 180° - ∠1 = 180° - 140° = 40°, так как ∠2 и ∠1 смежные, а сумма смежных углов равна 180°.
∠4 = ∠2 = 40°
ответ: 40°, 40°, 140°, 140°.
Опустим из С высоту на AD. Она пересечет AD в точке E. Из тре-ка CDE DE = CD cos D = 8 cos 60 = 4
Если AD = 20 то AE = BC = 20-4 = 16
CE = CD sin 60 = 8 √3/2 = 4√3
и так: R1 = 16 R2 = 20 L = 8 H = 4√4
V = 1/3 π · 4√3 · (16² + 16·20 + 20²) = 3904 π √3
S = π · (20² + (20 + 16) 8 + 16² ) = 944π
2. R = 4 Sсеч = 32√3 h = 2
S = 2 π R (H+ R)
V = π R² H
Площадь сечения - высота H умноженная на ширину сечения.
Ширина сечения (x) находится из треугольника образованного двумя радиусами и хордой на которые они опираются. Высота этого треугольника дана, h = 2.
x = 2 √(R²-h²) = 2√(16-4) = 4√3
Если Sсеч = 32√3 = H · x значит H = Sсеч / x = 32√3 / 4√3 = 8
S = 2 π R (H+ R) = 2π 4 ( 8 + 4) = 96π
V = π R² H = π 4² 8 = 128π