В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
А. Существует пятиугольник, все углы которого - острые. Нет. Сумма внешних углов выпуклого многоугольника всегда 360 градусов. Если все углы пятиугольника острые, то все его внешние улы больше 90 градусов, и их сумма тогда не менее 450 градусов, что противоречит действительной сумме.
Б. Существует четырехугольник, у которого все углы – острые. Нет.Сумма внутренних углов выпуклого четырехугольника равна 360° Если все его углы острые, эта сумма будет меньше 360°.
В. Существует пятиугольник, все углы которого - тупые. Существует. Как один из вариантов - правильный пятиугольник. Его углы равны по 180°-360°/5=108°.
Г. Существует четырехугольник, у которого все углы – тупые. Нет. В противном случае сумма его внутренних углов больше 360° , что не соответствует действительной.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.