Объяснение:
1. вектор AB + вектор BD= вектор AC + вектор CD
2. вектор AB + вектор BC= вектор AD + вектор DC
Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
BD = AD - AB
Дан параллелограмм ABCD. Найдите разность:
1. вектор AB- вектор AC = CB
2. вектор BC - вектор CD = AB+BC = AC
Найдем сторону вписанного квадрата, для этого воспользуемся т.Пифагора. Рассмотрим треугольник, образующийся из-за вписания одного квадрата в другой. Он прямоугольный (так как 1 его угол - угол квадрата), его меньший катет равен 4а/(7+4)=4а/11, а его больший катет равен 7а/11. Найдем гипотенузу этого треугольника (она же будет являться и стороной квадрата). По т.Пифагора 16а²/121+49а²/121=65а²/121, тогда √65а²/121' - это сторона квадрата, следовательно √65а²/121'•√65а²/121'=65а²/121 - S вписанного квадрата.
ответ: S=65a²/121.
уточнить нужно: касательная к окружности проведена в точке С
похоже, что так...
треугольник АВС будет прямоугольным (((т.к. угол С опирается на диаметр)))
угол СВА = 60 градусов
ОС _|_ СD как радиус, проведенный в точку касания...
---> треугольник OCD тоже прямоугольный...
треугольник СОВ равнобедренный СО=ОВ --- радиусы
---> углы ОСВ=ОВС=60 ---> угол СОВ тоже = 60 градусов ---> угол CDO = 30
ЧиТД
Подробнее - на -
Объяснение: