В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).
В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, поэтому радиус описанной окружности равен 2,5х. Медиана, проведенная к гипотенузе из вершины прямого угла, делит гипотенузу пополам, т.е. попадает в центр описанной окружности. Зная, что ее длина равна 6, можем найти х:
Периметр треугольника равен 3х+4х+5х=12х, т.е. 12*2,4=28,8