М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
GGG228666
GGG228666
03.04.2023 14:47 •  Геометрия

надо геометрию сделала все на фото

👇
Ответ:
Файрома
Файрома
03.04.2023

Шкрвоатикоклвл леиклклиу кшиклу

4,7(21 оценок)
Открыть все ответы
Ответ:
angellacat26ozuxwi
angellacat26ozuxwi
03.04.2023

сфера вписана в конус.

осевое сечение конуса -равнобедренный треугольник и вписанная окружность.

R=S/p

р=(a+b+c)/2

SΔ=√(p(p-a)(p-b)(p-c))

прямоугольный треугольник:

катет - радиус r основания конуса, найти

гипотенуза - образующая L конуса

катет - высота конуса Н

<α - угол между образующей и радиусом основания

cosα=r/L, r=L*cosα

равнобедренный треугольник со сторонами: L, L, 2r

pΔ=(L+L+2r)/2, pΔ=L+r, pΔ=L+L*cosα, pΔ=L(1+cosα)

SΔ=√((L+r)(L+r-r)(L+r-L)(L+r-L))=√((L+r)*r² *L

SΔ=r*√(L+r)L,

SΔ= (L*cosα)*√L(1+cosα)*L,

SΔ=L*cosα*L*√(1+cosα),

SΔ=L²cosα√(1+cosα)  

R= [ L²cosα√(1+cosα) ] / [ L(1+cosα) ] .

R=L*cosα√(1+cosα) .

Sсферы=4πR .

Sсферы=4πLcosα√(1+cosα).

4,4(80 оценок)
Ответ:
natashalixarev
natashalixarev
03.04.2023

Жили да были два треугольника. Один - равносторонний, у которого все стороны были одинаковой длины, сам он был весь правильный, симметричный, его очень часто школьники использовали, чтобы изучать доказательства теорем и решать геометрические задачи, другой - с разными сторонами, весь "кривенький", неправильный, некрасивый, неровный, вышагивал он, прихрамывая и получая насмешки от другого треугольника. Надо упомянуть, что, несмотря на все это, площадь обоих треугольников высчитывать по одной формуле: по формуле Герона (кроме того, для каждого из них, индивидуально: для равностороннего - по формуле S = (a² * √3)/4, где a – сторона треугольника, для произвольного - S = c²/(2 * (ctg∠α * ctg∠β)) или S = (c² * sin∠α * sin∠β)/2 * sin(∠α + ∠β)).

Несмотря на общее - то, что они оба были треугольниками - и различия в их мировоззрениях и формах, оба они обладали совершенно разными характерами. Первый был самоуверенным, себялюбивым и гордым. Другой знал себе цену, не слишком много о себе задумываясь, в то же время, его характер более покладистый и уравновешенный, - по-видимому, компенсация за непропорциональную внешность.

У первого треугольника, пусть его зовут Найс - была очень легкая жизнь. Он мало рассуждал о ней, жил, ни о чем не заботясь. Другой - Гуд - был очень вдумчивым, часто размышлял о смысле существования и старался улучшить ее. Эти двое не слишком ладили, но и не вздорили. У каждого был свой круг друзей - Найс дружил с правильными фигурами, - кубом, октаэдром, додекаэдром, пентагональном икоситетраэдром.. . Гуд уживался со всеми фиграми советом, пользой всем тем, чем мог. Он был дорб по натуре.

Оба треугольника жили в тетрадке у девочки, которая училась в пятом классе и любила геометрию. Она часто рисовала оба треугольника, когда решала задачи. А еще она их рисовала на классной доске.

Можно было бы сказать о том, что оба они прожили довольно длинную (до конца 36-листовой тетрадки) нормальную жизнь любого треугольника, вот только один из треугольников рисовался чаще другого, впрочем особого значения этот факт не имеет. Оба треугольника недолюбливали ластик - он мог их стереть начисто, что случалось не так часто. У треугольников была ровная, спокойная жизнь. Она бал окрашена разными цветами красок - в том случае, если эти фигуры попадали в поле деятельности девочки на уроках рисования. Но это уже другая история.. . Там треугольники сливались с окружающими фигурами и теряли свои формы, переставая быть треугольниками. У каждого из них были, конечно, свои привычки, любимые цвета, любое время дня и вечера.. . но это мало интересно кому-либо, кроме них самих, и можно не рассказывать об этих подробностях. Мы вспоминаем о треугольниках, когда видим предметы архитектуры, когда видим другие вещи такой формы. Вот тогда и пригодится рассказ о треугольниках.

4,8(75 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ