Ну про самого Ромба. Ромб - четырехугольник, у которого равны все стороны и противолежащие углы. ABCD - ромб, ВН = 4 см - высота, AB + BC + CD + AD = 4х = 32 см. Найдем длину стороны ромба: 4х = 32; х = 32/4; х = 8. Рассмотрим треугольник ВНА: ВН = 4 см и НА - катеты, АВ = 8 см - гипотенуза, угол ВНА = 90 градусов. Так как катет ВН в 2 раза меньше гипотенузы АВ, то он лежит напротив угла, равного 30 градусов (свойства прямоугольного треугольника), следовательно угол НАВ (угол А) = 30 градусов. Так как в ромбе противолежащие углы равны, то угол А = угол С = 30 градусов. По теореме о сумме углов четырехугольника: угол А + угол В + угол С + угол D = 360 градусов; 30 + х + 30 + х = 360; 2х = 360 - 60; 2х = 300; х = 300/2; х = 150. Угол В = угол D = 150 градусов. ответ: угол А = угол С = 30 градусов, угол В = угол D = 150 градусов.
<ABD=180°-85°-30°=65°. <B=<ABD+<CBD=65°+65°=130° Треугольник АВС равнобедренный (АВ=ВС - дано), значит <BCA=<BAC=(180°-130°):2=25° Итак, BО (О - точка пересечения диагоналей) в треугольнике АВС биссектриса, высота и медиана. Следовательно, диагональ BD перпендикулярна диагонали АС. Но если в треугольнике ADC DO - высота и медиана (АО=ОС - доказано выше), то он равнобедренный и <ACD=<CAD=60°, а <C=25°+60°=85°. Тогда <CDO=30° и <D=30°+30°=60°. ответ: <A=85°, <B=130°, <C=85° и <D=60°
безліч