М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Дано: MN=KL
КNR=60(градусов)
Найти:
Диаметр
MNR=__
NKL=__

👇
Открыть все ответы
Ответ:
mandish02
mandish02
28.08.2022
1. По первому признаку подобия треугольников будут подобны любые два .(?) треугольника.

I. Признак подобия треугольников по двум углам.
 Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Так как острые углы равнобедренных прямоугольныхтреугольников равны 45º, то по этому признаку подобны: 
5. любые два равнобедренных прямоугольных треугольника
.----------------
2.Треугольники АВС и AMN - равнобедренные. Периметр треугольника AMN равен 320 см, АВ=16 см, АМ=80 см. Найдите площадь треугольника АВС.
Задача не совсем корректна. Приходится по теме вопроса догадываться, что данные треугольники подобны.
 В треугольнике АМN сторона АМ=80. Из неравенства треугольников следует, что только  АМ  может быть основанием этого треугольника, и АN=МN=(320-80):2=120 
Тогда 
Вариант 1)
 АВ=16- основание меньшего треугольника 
k=АМ:АВ=80:16=5 
ВС=АС=120:5=24 
Высоту СН ∆ АВС найдем по т.Пифагора: 
СН=√(ВС²-ВН²)=√512=16√2 
Ѕ∆ АВС=ВН*СН=8*16√2=128√2 см² или  ≈181,02 см²  
Вариант 2) 
АВ=16 -  боковая сторона меньшего треугольника. 
Тогда k=AM:BC=120:16=7,5 
АС=80:7,5=32/3 
Тогда СН=АС:2=16/3 
Высота ВН=√(BC² -CH²)=√(9*256-256):9)=√(8*256:9)=√(2*4*256:3)=(32√2)/3
S ∆АВС=ВН*СН=(32√2)/3)*16/3
S ∆АВС=(32*16√2)/9 см²  или ≈ 80,453 см²
По первому признаку подобия треугольников (если два угла одного треугольника соответственно равны дв
4,8(64 оценок)
Ответ:
Arisha7777
Arisha7777
28.08.2022

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180°.

1) BC || AD

∠BCA = ∠CAD — накрест лежащие

2) a || b

накрест лежащие углы равны, сумма односторонних равна 180°

3) m || n

m и n ⊥ k — они уже являются параллельными, но, к дополнению, равны и соответственные углы и сумма односторонних 180°, т.к. все углы по 90°.

4) MN || KP

∠NOM = ∠KOP как вертикальные ⇒ ΔMNO равен ΔPKO по первому признаку равенства треугольников (две стороны и угол между ними)

Пары углов (∠N = ∠K) и (∠M = ∠P) — как накрест лежащие

5) SR || PT

SR и PT ⊥ SP — они уже являются параллельными, но, к дополнению, ∠S = ∠P = 90°, ∠SMR = ∠PMR как вертикальные ⇒ ΔSRM равен ΔPTM по второму признаку равенства треугольников (сторона и два прилегающих угла) .

∠R = ∠T — как накрест лежащие

6) d || e

равны соответствующие углы (по 40° и 140°), и сумма односторонних равна 180° (140+40).

7) RS || MQ, RM || SQ

отрезок MS — общий для ΔSRM и ΔMQS. Данные треугольники равны по первому признаку равенства треугольников:

∠RSM = ∠QMS — как накрест лежащие при RS || MQ

∠RMS = ∠QSM — как накрест лежащие при RM || SQ

8) m || n

равны соответствующие углы (по 36° и 144°), и сумма односторонних равна 180° (144+36).

9) a || b

равны накрест лежащие углы (по свойству биссектрисы угла и равнобедренного треугольника)

10) PQ || MN, PM || QN

отрезок PN — общий для ΔPQN и ΔNMP. Данные треугольники равны по первому признаку равенства треугольников:

∠QPN = ∠MNP — как накрест лежащие при PQ || MN

∠QNP = ∠MPN — как накрест лежащие при PM || QN

11) BA || DC

∠BEA = ∠CED как вертикальные ⇒ ΔBEA равен ΔCED по первому признаку равенства треугольников (две стороны и угол между ними)

Пары углов (∠EDC = ∠EAB) и (∠EBA = ∠ECD) — как накрест лежащие

12) m || n

равны накрест лежащие углы (по свойству биссектрисы угла и равнобедренного треугольника)

13) MS || FQ

MS — биссектриса ∠NMQ. Угол ∠NMQ — внешний для вершины M равнобедренного треугольника MFQ. Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним ⇒ ∠MFQ = ∠MQF = ∠NMS = ∠SMQ.

∠SMQ = ∠MQF — как накрест лежащие

14) BC || AD, BA || CD

Пары углов (∠BOA = ∠DOC) и (∠BOC = ∠DOA) как вертикальные ⇒ ΔBOA равен ΔDOC и ΔBOC = ΔDOA по первому признаку равенства треугольников.

∠OBC = ∠ODA и ∠OCB = ∠OAD — как накрест лежащие при BC || AD

∠OBA = ∠ODC и ∠OAB = ∠OCD — как накрест лежащие при BA || CD

4,7(97 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ