Треугольник ВОР подобен треугольнику ВDA, тк у них совпадают все ∠(по 60°) В треугольнике BDA все ∠ по 60°, тк во-первых он равнобедренный (AD = AB), значит ∠ у основания равны, значит и третий ∠ равен 180-60-60=60° ∠ В общий у треугольников BOP и BDA и равен тоже 60°, а ∠ ВOP и ∠BPO равны ∠ BDA, ∠BAD треугольника BDA, тк PO ||AD, BD и BA секущие и по одному из св-в внешние углы равны Значит треугольник ВОР тоже равносторонний, а в равностороннем треугольнике радиус оп. окр. вычисляется по формуле а√3 делить на 3. Вместо "а" подставляем значение стороны ВР и получаем 6√3/3, что ≈ 3,46
Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
В треугольнике BDA все ∠ по 60°, тк во-первых он равнобедренный (AD = AB), значит ∠ у основания равны, значит и третий ∠ равен 180-60-60=60°
∠ В общий у треугольников BOP и BDA и равен тоже 60°, а ∠ ВOP и ∠BPO равны ∠ BDA, ∠BAD треугольника BDA, тк PO ||AD, BD и BA секущие и по одному из св-в внешние углы равны
Значит треугольник ВОР тоже равносторонний, а в равностороннем треугольнике радиус оп. окр. вычисляется по формуле а√3 делить на 3. Вместо "а" подставляем значение стороны ВР и получаем
6√3/3, что ≈ 3,46