Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Объяснение: квадрат диагонали параллелепипеда равен сумме квадратов его измерений:
Д²=дл²+шир²+выс²=
Д²=7²+6²+10²=49+36+100=185;
Д=√185см
Если нужно найти диагонали граней параллелепипеда, тогда обозначим его вершины А В С Д В1 С1 Д1. Диагональ ВД делит грань АВСД на 2 равных прямоугольных треугольника, в которых стороны основания являются катетами а диагональ гипотенузой. Найдём диагональ ВД грани АВСД по теореме Пифагора: ВД²=АВ²+АД²=6²+7²=36+49=
=85; ВД=√85см. Такая же величина диагонали у грани А1В1С1Д1. Теперь найдём диагональ грани АА1ВВ1 также по теореме Пифагора:
АВ1²=АВ²+АА1²=6²+10²=36+100=136;
АВ1=√136=2√34см. Такая же величина диагонали у грани Д1ДС1С. Диагонали одной грани равны между собой.
Диагональ грани АА1ДД1=АД²+ДД1²=
=7²+10²=49+100=149; ДД1=√149см
Диагональ ДД1=√149см