Рискну, все-таки, представить решение. Возьмем произвольную точку С на окружности (O;R). Треугольник АВС - прямоугольный, так как опирается на диаметр. Точка J - центр вписанной в этот треугольник окружности - лежит на пересечении биссектрис углов треугольника АВС. Проведем прямую СJ до пересечения с описанной окружностью (O;R). Точка пересечения D - конец диаметра, так как вписанный <DCB=45° и центральный угол DОВ=90° (при любом положении точки С, исключая точки А и В, так как в этом случае треугольник АВС вырождается). Заметим, что <AJD=(<A+<C)/2, как внешний угол треугольника ACJ. Проведем прямую АJ до пересечения с описанной окружностью (O;R). <BAC1=(1/2)*<A, <DAB=(1/2)*<C (вписанный, опирающийся на одну дугу, что и <DCB). Значит <DAC1=<DAJ=(<A+<C)/2, треугольник DAJ равнобедренный и АD=DJ. И это, как уже отмечалось, при ПРОИЗВОЛЬНОМ положении точки С на окружности, исключая точки А и В. Следовательно, точка J описывает дугу окружности радиуса R√2 c центрами в точках D и E ( в зависимости от расположения точки С относительно диаметра АВ).
Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
Возьмем произвольную точку С на окружности (O;R).
Треугольник АВС - прямоугольный, так как опирается на диаметр.
Точка J - центр вписанной в этот треугольник окружности - лежит на пересечении биссектрис углов треугольника АВС.
Проведем прямую СJ до пересечения с описанной окружностью (O;R).
Точка пересечения D - конец диаметра, так как вписанный
<DCB=45° и центральный угол DОВ=90° (при любом положении точки С, исключая точки А и В, так как в этом случае треугольник АВС вырождается).
Заметим, что <AJD=(<A+<C)/2, как внешний угол треугольника ACJ.
Проведем прямую АJ до пересечения с описанной окружностью (O;R).
<BAC1=(1/2)*<A, <DAB=(1/2)*<C (вписанный, опирающийся на одну дугу, что и <DCB). Значит <DAC1=<DAJ=(<A+<C)/2, треугольник DAJ равнобедренный и АD=DJ. И это, как уже отмечалось, при ПРОИЗВОЛЬНОМ положении точки С на окружности, исключая точки А и В.
Следовательно, точка J описывает дугу окружности радиуса R√2 c центрами в точках D и E ( в зависимости от расположения точки С относительно диаметра АВ).