Дано: ABCD - трапеция EF - средняя линия EO = 3 см OF = 4 см Найти: AB Решение. 1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам. 2) Рассмотрим треугольники EOD и ABD. Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD. Угол DBC общий. Следовательно, треугольник BOF подобен BDC. 3) Из подобия треугольников следует, что AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
Центр правильного треугольника - это центр описанной и вписанной окружности, и расположен он в точке пересечения высот (медиан, биссектрис). Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е. АО=ВО=СО, .Эти отрезки - проекции наклонных МА, МВ, МС Поскольку проекции равны, то и наклонные равны. Т.е. МА=МВ=МС МА по т. Пифагора МА=√ (АО²+МО²) АО - радиус описанной окружности и может быть найден по формуле R=a/√3 или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО. h=a√3):2=6√3):2=3√3 AO=3√3):3)·2=2√3 МА=√(АО² + МО²)=√(12+4)=4 см
сначала находиш радиус.здесь радиусом будет расстояние от центра до начала координат.
радиус равен
= 5
уравнение окружности -