В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Объяснение:
Рассмотрим 2 случая. Пусть АВ, АС будут боковыми сторонами треугольника, тогда сторона ВС будет основанием.
1 случай:
Пусть основание треугольника будет 8 см, тогда боковая сторона будет 6 см. ∆АВС - равнобедренный => боковые стороны равны АВ = АС = 6 см. Тогда:
Раbc = АВ + АС + ВС = 6 + 6 + 8 = 12 + 8 = 20 см.
2 случай:
Пусть основание треугольника будет 6 см, тогда боковая сторона будет 8 см. ∆АВС - равнобедренный => боковые стороны равны АВ = АС = 8 см. Тогда:
Раbc = АВ + АС + ВС = 8 + 8 + 6 = 16 + 6 = 22 см.