3. Дан треугольник ABC. Плоскость, параллельная прямой АВ, пересекает сторону АС в точке М, а сторону ВС в точке К. Найдите КМ, если АВ -15см, AM : МС -2:3.
Дано: окружность О; OB = R = 5 см АС - хорда OB ⊥ AC BD = 2 см Найти АС Решение ОВ = 5 см как радиус окружности 1) Найдём OD OD = OD - BD = 5см - 2 см = 3 см OD = 3 см 2) ΔODC - прямоугольный, т.к. по условию OB ⊥ AC, поэтомуможно применить теорему Пифагора. OD² + DC² = OC² DC² = OC² - OD² DC² = 5² - 3² = 25 - 9 = 16 DC = √16 = 4 см DC = 4 см 3)ΔADO = ΔODC ∠ADO = ∠ODC = 90° OA = OC = R = 5 см OD - общая Из равенства треугольников ΔADO = ΔODC следует равенство DC = AD = 4 см А теперь находим АС АС = 2*4см = 8 см ответ: 8 см
Рисунок вам нарисовала. Там все ясно-понятно. Треугольник FAB равносторонний. Все стороны равны, все углы по 60, такой вывод делаем из условия. Сторону этого треугольника обозначаем х. Δ FMA: М = 90 FM - бисектриса, медиана, высота FM = хsina = x√3/2 Чтобы найти угол между мимобегущими, нужно найти угол между паралельными им прямыми, которые пересекаются. Перенесем AC в ML, это будет средняя линия треугольника ABC Чтобы узнать AC найдем диагональ квадрата d² = 2a² Сторона у нас х d² = 2x² d = x√2 ML = x√2/2 ΔFMO₁ (O₁ = 90) MO₁ = x√2/4 MO₁/FM = cos a = x√2/4/x√3/2 = √2/2√3 = √6/6 Не знаю, почему значение не табличное, может я ошиблась, но вроде все правильно было :)
OB = R = 5 см
АС - хорда
OB ⊥ AC
BD = 2 см
Найти АС
Решение
ОВ = 5 см как радиус окружности
1) Найдём OD
OD = OD - BD = 5см - 2 см = 3 см
OD = 3 см
2) ΔODC - прямоугольный, т.к. по условию OB ⊥ AC, поэтомуможно применить теорему Пифагора.
OD² + DC² = OC²
DC² = OC² - OD²
DC² = 5² - 3² = 25 - 9 = 16
DC = √16 = 4 см
DC = 4 см
3)ΔADO = ΔODC
∠ADO = ∠ODC = 90°
OA = OC = R = 5 см
OD - общая
Из равенства треугольников ΔADO = ΔODC следует равенство
DC = AD = 4 см
А теперь находим АС
АС = 2*4см = 8 см
ответ: 8 см