по т. Фалеса ВЕ=ЕС => EH - средняя линия и EH=1/2DC
BD=DC => EH=EM
средние линии параллельны основаниям треугольников => ЕМ || ВD и ЕН || DC => DHEM - параллелограмм => НD=EM и НЕ=DM, а ЕН=ЕМ => НD=EM=НЕ=DM => это ромб
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
1
BD=1/2AC=DC => треугольник ВDC - равнобедренный
ЕМ - средняя линия => ЕМ=1/2ВD
EM - средняя линия => ВН=HD
по т. Фалеса ВЕ=ЕС => EH - средняя линия и EH=1/2DC
BD=DC => EH=EM
средние линии параллельны основаниям треугольников => ЕМ || ВD и ЕН || DC => DHEM - параллелограмм => НD=EM и НЕ=DM, а ЕН=ЕМ => НD=EM=НЕ=DM => это ромб
2
по теореме Пифагора
АС²=АВ²+ВС²
АС²=16²+12²=256+144=400
АС=20
BD=1/2AC (из доказательства 1) => BD=1/2*20=10
BH=HD (из доказательства 1) => HD=1/2BD=1/2*10=5
Phdme=HD+DM+ME+HE=4HD (т.к. НDME - ромб)
Phdme=4*5=20