ответ:20см 20см 24см
Объяснение:
Дано:
О - центр вписаного у ∆АВС. ∆АВС - рівнобедрений,
АВ = ВС. N, К, Р - точки дотику. ВК : КС = 2 : 3. Р∆АВС = 70 см.
Знайти: АВ, ВС, АС.
Розв'язання:
За умовою ВК : КС = 2 : 3, тоді ВК = 2х (см), КС = 3х (см).
За властивістю дотичних до кола, проведених з однієї точки, маємо:
ВК = BN = 2х (см), КС = PC = 3х (см).
За аксіомою вимірювання відрізків маємо:
ВС = ВК + КС = 2х + 3х = 5х (см). АВ = ВС = 5х (см).
Р - середина відрізка AC, PC = АР = 3x (см).
АС = PC + АР; АС = 3х + 3х = 6х (см).
Р∆АВС = АВ + ВС + АС: 5х + 5х + 6х = 70; 16х = 70; х = 4.
АВ = ВС = 5 • 4 = 20 (см); АС = 6 • 4 = 24 (см).
Biдповідь: 20 см, 20 см, 24 см.
Відрізки двох дотичних, що виходять із однієї точки, рівні. АВ=АС, тому трикутник АВС рівнобедрений
Трикутники АВО і АСО рівні за трьома сторонами (ОВ=ОС як радіуси одного кола, АО-спільна, АВ=АС як зазначалося раніше)
Тому і відповідні кути рівні, а саме <BAO=<OAC=<ВАС/2=60°/2=30°
Знайдемо радіус через трикутник АОВ. Радіус, проведений до точки дотику дотичної і кола, перпендикулярний до цієї дотичної, тому <ОВА=90° і трикутник АОВ прямокутний
ОВ лежить навпроти кута 30°, а АО гіпотенуза, тому радіус удвічі менше за АО
R=OB=12/2=6 см