Так как трапеция АВСД прямоугольная ( углы А=В=90*), то высота АВ есть одна боковая сторона и она равна 8 по усл. Обрати внимание, что меньшее основание ВС = 10 см ( ВД оно никак не может быть) АД - большее основание. Рисуй картину.
Угол СДА = 45*.
1. Опустим высоту из вершины СН на сторону АД. СН=АВ=8 см.
2. Рассм треуг СНД ( Н=90*) В нем Угол С=45* (180-90-45=45)
Значит по признаку тр СНД - р/б (НД=СН), след НД=8 см
3. АВСД прямоугольник по опред , след ВС=АН=10 см
4. основание АД трапеции = 10+8=18 см
5. Ср лин трапеции = (18+10)/2=28/2=14 см
ответ ср лин = 14 см
ответ: Sбок=720см², Sоснов=2295см²;
Sполн=3015см²
Объяснение: сначала найдём площадь одной боковой грани пирамиды: используя периметр, так как нам известны боковое ребро и сторона основы. Так как пирамида правильная, то боковые рёбра в ней равны, поэтому: Р=17×2+30=34+30=64см.
Для нахождения площади нужен полупериметр: р=64÷2=32см:
Найдём площадь боковой грани по формуле: S=√(p(p-a)(p-b)(p-c)), где а, b, c, стороны треугольника:
S=√(32(32-17)(32-17)(32-30))=√(32×15×15×2)=√(64×15×15)=
=8×15=120см²
Итак: S боковой стороны=120см².
Так как таких сторон 6, то площадь боковых сторон=120×6=720см²
Теперь найдём площадь шестиугольного основания по формуле:
S=а²×(3√3)/2=30²×(3√3/2)=900×3√3/2=
=450×3√3=1350√1350×1,7=2295см²
Итак: Sосн=2295см²
Теперь суммируем обе площади:
Sосн+Sбок=2295+720=3015см²
Если в треугольнике биссектриса является высотой, то этот треугоьник равнобедренный(это факт) в равнобедренном треугольнике бессектриса является и высотой и медианой, если медиана равна половине стороны на которую она опущена, то угол из которого она опущена тупой, т.е равен 90