В равнобедренном треугольнике боковые стороны равны:
АВ = ВС.
Высота равнобедренного треугольника, выходящая из тупого угла к основанию, делит его пополам:
АД = ДС = АС / 2.
Периметром треугольника является сумма всех его сторон:
Р = АВ + ВС + АС.
Так как длина стороны АС равна сумме отрезков АД и ДС, а сторона АВ у этих треугольников общая, то периметр треугольника АВС будет равен удвоенной сумме сторон АВ и АД:
Р = (АВ + АД) · 2.
Для этого найдем сумму отрезков АВ и АД. Так как периметр треугольника АВД равен 24 см, а сторона ВД равна 8 см, то:
1) Пусть аbcd - параллелограмм bh- биссектриса тупой угол = 150, тогда острый = 30 При проведении биссектрисы получается треугольник abh, где 2 угла будут равны по 75 градусов, т. е он равнобедренный, значит стороно ab=ah=16. Теперь в этом трегольнике проведем высоту из угла А. Получится что она лежит против угла в 30 градусов и равна половине гипотенузы= 16:2=8 Площадь параллелограмма = 8*(16+5)=168 см^2
2) площадь ромба равна 1/2*d*d1 где d и d1 это диагонали ромба и получается следуещее d/d1=3/4 4d=3d1 d=3d1/4 S=1/2*d*d1 24=1/2*3*d1/4*d1 24=3*d1^2/8 8=d1^2/8 d1^2=8*8 d1=8 d=3*d1/4=3*8/4=6 сторона ромба по теореме пифагора получится так a^2=(d/2)^2+(d1/2)^2 где a- это сторона ромба a^2=(d/2)^2+(d1/2)^2 a^2=(6/2)^2+(8/2)^2=9+16=25 a=5 P=4*a=4*5=20
3. Периметр ромба равен 4*сторона сторона равна периметр\4 сторона ромба равна 52\4=13 см Площадь ромба равна произведению квадрата стороны на синус угла между сторонами отсюда синус угла равен площадь робма разделить на квадрат стороны sin A=120\(13^2)=120\169 Так как угол А -острый, то cos A=корень (1-sin^2 A)=корень (1-(120\169)^2)= =119\169 По одной из основніх формул тригонометрии tg A=sin A\cos A=120\169\(119\169)=120\119 ответ: 120\169,119\169,120\119.
СДЕЛАЙ ЛУЧШИМ!
В равнобедренном треугольнике боковые стороны равны:
АВ = ВС.
Высота равнобедренного треугольника, выходящая из тупого угла к основанию, делит его пополам:
АД = ДС = АС / 2.
Периметром треугольника является сумма всех его сторон:
Р = АВ + ВС + АС.
Так как длина стороны АС равна сумме отрезков АД и ДС, а сторона АВ у этих треугольников общая, то периметр треугольника АВС будет равен удвоенной сумме сторон АВ и АД:
Р = (АВ + АД) · 2.
Для этого найдем сумму отрезков АВ и АД. Так как периметр треугольника АВД равен 24 см, а сторона ВД равна 8 см, то:
АВ + АД = 24 - 8 = 16 см.
Р = 16 · 2 = 32 см.
ответ: периметр треугольника АВС равен 32 см.