Построим координатный параллелепипед точки А. Отметим на оси х — Ах(1;0;0); у — Ау(0;2;0); z — Аz (0;0;3).
Затем из точки Ах проведем две прямые, параллельную оси у и оси z, из точки Ау — прямые параллельные оси x и оси z; из Аz — параллельные оси х и оси у.
При пересечении прямых получаются точки Аху, Ауz, Ахz. Тогда
AxAxy = 2; AxAxz = 3; AyAxy = 1; AyAyz = 3; AzAxz = 1; AzAyz = 2;
Перпендикулярами на координатные оси будут отрезки ААz ААу; АAх на координатные плоскости αху, Ауz АХz. Получаем что основания перпендикуляров: Аху(1;2;0), Аyz(0;2;3), Аxz(1;0;3).ответ:
Объяснение:
По определению средней линии ее длина равна половине длины параллельного ей основания.
Следовательно, длины оснований трапеции равны:
1,5 х 2 = 3
7,5 х 2 = 15
Площадь трапеции равна произведению полусуммы оснований на высоту: S = (a+b)h/2
Отсюда высота трапеции: h = 2S/(a+b) = 2 x 72 / (15+3) = 8
Так как трапеция является равнобедренной, углы при ее основаниях попарно равны. Высоты, проведенные от верхнего основания к нижнему, делят нижнее основание на три отрезка: 6 + 3 + 6 = 15 (см.рисунок)
Длину боковой стороны найдем по теореме Пифагора из образовавшегося прямоугольного треугольника (боковая сторона - гипотенуза, катеты - высота и часть нижнего основания)
√8²+6² = √100 = 10