М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
f0xses
f0xses
18.06.2022 10:18 •  Геометрия

В основании прямой призмы с высотой 16 лежит треугольник, стороны которого 7 и 12 образуют угол 60˚. Найти обьем этого многогранника.

👇
Ответ:
ab198me
ab198me
18.06.2022
Чтобы найти объем прямой призмы, нам нужно умножить площадь основания на высоту.

Для начала, рассмотрим треугольник, лежащий в основании. У нас есть две стороны данного треугольника - 7 и 12, и мы знаем, что они образуют угол 60 градусов.

Чтобы найти площадь этого треугольника, мы можем использовать формулу для площади треугольника:

Площадь = (1/2) * основание * высота

Угол 60 градусов говорит нам о том, что мы имеем дело с равносторонним треугольником. Основанием для этого треугольника может служить любая из его сторон, поэтому сделаем его равным 7.

Теперь нам нужно найти высоту треугольника. Мы можем использовать теорему Пифагора, так как синус 60 градусов равен отношению противоположной стороны (высоты) к гипотенузе (стороне 12).

sin(60) = высота / 12

1/2 = высота / 12

высота = 12 * 1/2

высота = 6

Таким образом, площадь треугольника равна

(1/2) * 7 * 6 = 21

Теперь мы можем найти объем призмы, умножив площадь основания на высоту:

Объем = 21 * 16 = 336

Ответ: объем этой призмы равен 336.
4,5(52 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ