М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alvd1986
alvd1986
29.07.2021 08:24 •  Геометрия

ЗАРАНЕЕ Сторона квадрата равна 1. На рисунках проведены окруж-

ности, центры которых лежат либо в вершинах квадрата, либо в се-

рединах его сторон. Найдите радиусы закрашенных окружностей

на рисунках.​

👇
Открыть все ответы
Ответ:
shams200108
shams200108
29.07.2021

Обозначим :

Н - высота пирамиды

h - высота основания пирамиды

r -радиус окружности, вписанной в основание

а - сторона основания

Решение

а) высота пирамиды Н = L· sinβ

б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.

в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =

 = 2√3 · L·cosβ

г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.

Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β

д) Площадь боковой поверхности пирамиды

Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ

e) площадь полной поверхности пирамиды:

Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =

= 3√3 · L² · cosβ · (cosβ + 1)

Подробнее - на -

4,8(56 оценок)
Ответ:
natalya00786
natalya00786
29.07.2021
Отрезки касательных из точки вне окружности до точки касания  с ней равны. 
Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ. 
Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой.  
 Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис. 
ВК и СМ - биссектрисы равных углов В и С соответственно.
 Угол АВК равен половине угла АВС, и, следовательно, равен  четверти дуги, заключенной между  сторонами   угла АВС, поэтому ВК пересекает дугу ВС в ее середине. 
Аналогично СМ пересекает дугу ВС в ее середине.
Середина дуги ВС - точка пересечения биссектрис треугольника АВС и  потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать. 
Много ! касательные к окружности в точках в и с пересекаются в точке а. докажите, что центр окружнос
4,8(13 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ