25. Точка 0 лежит на большем основании AD трапеции ABCD и одина- ково удалена от прямых, проходящих через остальные стороны трапеции. Докажите, что 0 - точка пересечения биссектрис углов В и С трапеции ABCD.
Пусть MNPQM1N1P1Q1 - куб. Я присваиваю новые обозначения четырем вершинам M -> A; N1 -> B; P -> C; Q1 -> D; (само собой, я и про старые обозначения не забываю, просто помню, что если говорю "точка А", то это одновременно означает "точка М", и наоборот). Ясно, что ABCD - правильный тетраэдр, так как все его грани - равносторонние треугольники. Точка K является центром грани куба MM1Q1Q, точка L - центр грани куба NN1P1P, поэтому KL II PQ. Точка С1 - центр грани MM1N1N, и в задаче надо найти угол C1PQ; Если считать длину ребра куба равной 2, то C1P = √(1^2 + 2^2 + 2^) = √6; и косинус угла C1PQ = 1/√6 = √6/6;
Расстояние от точки К до прямой LM — это высота, проведённая из вершины К на сторону LM. Обозначим высоту через h. Треугольник КLM прямоугольный. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. Гипотенуза LM — с, тогда катет КL — 1/2 с. Площадь треугольника равна половине произведения катетов. Один катет — 1/2 с, другой — 24,8 S=1/2*1/2c*24,8=6,2с Площадь так же равна половине произведения высоты (h) на основание (c). S=1/2*h*c Приравняем правые части 6,2с=1/2*h*c h=6,2*2=12,4 ответ 12,4 см
Я присваиваю новые обозначения четырем вершинам
M -> A; N1 -> B; P -> C; Q1 -> D;
(само собой, я и про старые обозначения не забываю, просто помню, что если говорю "точка А", то это одновременно означает "точка М", и наоборот).
Ясно, что ABCD - правильный тетраэдр, так как все его грани - равносторонние треугольники.
Точка K является центром грани куба MM1Q1Q, точка L - центр грани куба NN1P1P, поэтому KL II PQ.
Точка С1 - центр грани MM1N1N, и в задаче надо найти угол C1PQ;
Если считать длину ребра куба равной 2, то C1P = √(1^2 + 2^2 + 2^) = √6;
и косинус угла C1PQ = 1/√6 = √6/6;