Задачу можно решить двумя обычным и через sin))) Какой вам лучше, выбирайте сами.
Обозначим параллелограмм, как АВСД
ВН - высота, опущенная на сторону АД
АН = 4 см, НД = 2 см.
АД = АН + НД = 4 + 2 = 6 см.
параллелограмма = АД × ВН
Угол В = 135 - 90 = 45 градусов (т.к. ВН - высота, следовательно, она опущена под углом 90 градусов)
Рассмотрим треугольник АВН. Угол ВНА = 90 градусов, АВН = 45 градусов, следовательно угол ВАН = 180 - 90 - 45 = 45 градусов. Значит треугольник АВН - равнобедренный
Следовательно, ВН=АН=4 см.
S параллелограмма = 6 × 4 = 24
параллелограмма = АВ × АД × sin a
Sin а = 45 градусов = √2 делённое на 2
АВ² = √ВН² + АН² = √4² + 4² = √32
S параллелограмма = √32 × 6 × √2 делённое на 2 = 24
У меня получилось что расстояние от точки М до вершины В равно 8 см, показываю как получил:
1. СК и АN - медианы треугольника АВС.
2. По условию задачи точка М удалена от стороны АС на 4 см, то есть она принадлежит перпендикуляру, проведенному к стороне АС.
3. Проведем через эту точку высоту ВН к стороне АС.
4. По условию задачи треугольник АВС равнобедренный, следовательно, высота ВН является еще и медианой.
5. Точка пересечения медиан, согласно их свойствам, делит каждую из них на два отрезка, относящихся как 2 : 1, начиная от вершины, то есть ВМ : НМ = 2 : 1.
ВМ = 4 х 2 = 8 см.
ответ: расстояние от точки М до точки В равно 8 см.
1) 8+14+12=34 см
2)высота треугольника 12
12*2/3=8 см