∠АОВ и ∠COD вертикальные,
∠ВОС и ∠AOD вертикальные.
Проведем:
ОЕ - биссектрису ∠АОВ,
OF - биссектрису ∠СOD,
OK - биссектрису ∠BOC,
OM - биссектрису ∠AOD.
Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Что и требовалось доказать.
а) 80°. б) 70°.
Объяснение:
По данным условия и рисунка многогранние ABCF - треугольная пирамида.
а) Прямые АВ и В1С1 - скрещивающиеся по определению: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Так как В1С1 параллельна ВС, то угол между скрещивающимися прямыми АВ и В1С1 равен углу между пересекающимися прямыми АВ и ВС. То есть это угол АВС = 80° (дано).
б) Аналогично. Так как А1С1 параллельна АС, то угол между скрещивающимися прямыми А1С1 и ВС равен углу между пересекающимися прямыми АС и ВС. То есть это угол АСВ. В треугольнике АВС по сумме внутренних углов треугольника
∠АСВ = 180° - 30° - 80° = 70°.
Значит искомый угол равен 70°.
Внешний угол равен сумме двух углов не смежных с ним.
70+35= 105°
ответ: внешний угол равен 105°