ответы в решениях:
Объяснение:
№1. Найдите площадь параллелограмма, если одна из его сторон равна 8 м, а высота, проведённая к ней, равна 40 дм.
Высота 40 дм=4м.
S=ah=8*4=32 м².
***
2. Вычислите площадь треугольника, если одна из его сторон равна 7 дм, а высота, проведённая к ней, равна 6 дм.
SΔ=ah/2=7*6/2=21 дм².
***
3. Площадь треугольника равна 60 см. Чему равна высота треугольника, проведенная к стороне 20 см?
S=ah/2; h=2S/a=2*60/20=6 см.
***
24. Вычислите площадь ромба, если его диагонали равны 44 см и 2,2 дм.
S ромба=d1*d2/2 = 44*22/2=484 см².
***
№5. Стороны треугольника АВ и ВС треугольника ABC равны соответственно 18 см и 20 см, а высота проведённая к стороне AB, равна 10 см. Найдите высоту, проведённую к стороне BC.
***
SΔАВС=АВ*KС/2=10*18/2=90 см².
Высота CM=S/BC=90/18= 5 см.
Объяснение:
Разделим тождество на две части и решим каждого:
1+ tg×(180°- a)×sin×(90°-a)×sin a = cos²×(180°- a)
1) 1+ tg×(180°- a)×sin×(90°-a)×sin a
Сначало по формулам приведения переведем тригоном. функции:
1-tg a × cos a × sin a
Дальше,раскрываем тангенс по формуле: tg a =sin a/cos a :
1-sin a/cos a × cos a × sin a
Сокращаем cos a и получаем:
1-sin² a=> по осн. тригоном. тожд. => cos² a
2)cos²×(180°- a)
Воспользуемся формулой приведения:
cos²×(180°- a)= - cos²a
По основ. тригоном.тождеству sin²a+cos²a=1 =>cos²a=1-sin²a :
- cos²a = -(1-sin²a) = -1+sin²a=sin²a-1=cos²a
В первой части тождества получили: cos² a
И во второй части получили: cos² a
Поэтому:
cos² a=cos² a
Ч.т.д