АК должно проходить через точку Н SH -высота пирамиды, Так как все грани наклонены под одинаковым углом к основанию, то Н- центр вписанной окружности. Проведем SK перпендикулярно ВС. По теореме о трех перпендикулярах НК тоже перпендикулярно ВС. Угол SKH - линейный угол двугранного угла между боковой гранью и пл. основания и поэтому угол SKH=60 НК одновременно будет радиусом вписанной окружности треугольника АВС. Плоскость SHK перпендикулярна ВС и следовательно грани SBC, поэтому шар будет касаться грани SВС в точке принадлежащей SK. Пусть центр шара - точка О Сделаем выносной чертеж плоскости SHK. ОМ перпендикулярно SK ОМ=OH=R. М - точка касания шара и боковой грани. MO1 перпендикулярно SH. O1M это будет радиус окружности, проходящей через точки касания. ОК является биссектрисой угла SKH=> угол OKH=30 Из треугольника ОНК: ОН/НК=tg30, HK=R*sqrt(3) HK/SK=cos60 => SK=2Rsqrt(3) (или катет против угла в 30 градусов) -апофема бококвой грани найдена. Одновременно мы нашли и КМ=НК=R*sqrt(3). Значит SM=R*sqrt(3) А тогда из подобия треугольников SMO1 и SKH следует, что O1M=(1/2)HK=(R*sqrt(3))/2 Тогда длина окружности проходящей через точки касания равна 2*pi*(R*sqrt(3))/2...
1) Если один из внешних углов равен 135 гр, значит два угла внутренних равны 45 гр. В прямоугольном треугольники, если углы по 45 гр., катеты равны a, а гипотенуза равна a * sqrt(2). Соответственно, a * sqrt(2) = 10 => a = 5 * sqrt(2). Произведение катетов: a * a = 5 * 5 * 2 = 50. 2) В прямоугольном треугольнике, в котором углы 30, 60, 90 гр, стороны равны a, a * sqrt(3), 2 * a соответственно напротив каждого угла. Напротив 30 гр будет наименьшая сторона (a). Разность между гипотенузой и меньшим катетом: 2a - a = 4 => a = 4. Таким образом, гипотенуза равна 8 см.
SH -высота пирамиды, Так как все грани наклонены под одинаковым углом к основанию, то Н- центр вписанной окружности. Проведем SK перпендикулярно ВС. По теореме о трех перпендикулярах НК тоже перпендикулярно ВС. Угол SKH - линейный угол двугранного угла между боковой гранью и пл. основания и поэтому угол SKH=60
НК одновременно будет радиусом вписанной окружности треугольника АВС. Плоскость SHK перпендикулярна ВС и следовательно грани SBC, поэтому шар будет касаться грани SВС в точке принадлежащей SK.
Пусть центр шара - точка О
Сделаем выносной чертеж плоскости SHK. ОМ перпендикулярно SK ОМ=OH=R. М - точка касания шара и боковой грани. MO1 перпендикулярно SH. O1M это будет радиус окружности, проходящей через точки касания. ОК является биссектрисой угла SKH=> угол OKH=30
Из треугольника ОНК: ОН/НК=tg30, HK=R*sqrt(3)
HK/SK=cos60 => SK=2Rsqrt(3) (или катет против угла в 30 градусов) -апофема бококвой грани найдена. Одновременно мы нашли и КМ=НК=R*sqrt(3). Значит SM=R*sqrt(3)
А тогда из подобия треугольников SMO1 и SKH следует, что O1M=(1/2)HK=(R*sqrt(3))/2
Тогда длина окружности проходящей через точки касания равна 2*pi*(R*sqrt(3))/2...