найдем координаты середины диагоналей четырехугольника ABCD:
середина диагонали АС
x=(0+5)/2=2.5
y=(1+1)/2=1
(2.5;1)
середина диагонали BD
x=(4+1)/2=2.5
y=(3+(-1))/2=1
(2.5;1)
таким образом диагонали четырехугольника пересекаются в точке, что делит их пополам, поэтому за признаком парарлелограмма четырехугольник АВСD - парареллограм
найдем длины диагоналей
AC=((5-0)^2+(1-1)^2)=5
BD=((4-1)^2+(-1-3)^2)=5
диагонали параллелограма ABCD равны АC=BD, за признаком прямоугольника ABCD- прямоугольник. Доказано
Подробнее - на -
Объяснение:
ответ: cos B - 12/13
sin B-5/13
tg B-5/12
ctg B-12/5
Объяснение:
Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.
Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.
Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.
Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.
P.s
Постараюсь русским языком объяснить. BA- гипотенуза, она равна 13 см. ВС- это катет прилегающий катет, равен 12 см. СА это противолежащий катет,равен 5 см. И теперь по выписанным значениям делаем.
А если у нас угол А был бы,то CA был прилегающим катетом. А ВС противолежащим катетом.
Надеюсь понятно объяснил.