1) В основании пирамиды квадрат со стороной 16. Диагонали АС и BD по теореме Пифагора АС=BD=√(16²+16²)=16·√2 Высота пирамиды H=SO, O- центр квадрата, точка пересечения диагоналей и одновременно центр описанной окружности, центр вписанной окружности. По теореме Пифагора H²=SO²=SA²-AO²=17²-(16√2/2)²=289-128=161 H=√161 V=(1/3)S(осн)·Н=(1/3)·16²·√161=256√161/3 куб. ед.
2) Центр окружности, описанной около прямоугольного треугольника - середина гипотенузы. R=c/2 c²=1²+5²=26 R=(√26)/2 V(цилиндра)=S(осн.)·H=πR²·H=π·((√26)/2)²·(8/π)=52 куб. ед.
d(P,AC) -? Пусть O точка пересечения диагоналей ромба AC и BD (O=[AC] ⋂ [BD] ). Соединяем точка O с точкой P. BO проекция наклонной PO на плоскости ромба. По теореме трех перпендикуляров заключаем , что PO ⊥AC (AC⊥ BO⇒AC⊥ BO). Значит PO и есть расстояние от точки P до диагонали AC, т.е. PO =d(P,AC). Из прямоугольного треугольника (диагонали ромба перпендикулярны) AOB: BO =AB*cos(∠ABO) =c*cosα (∠ABO=(∠ABC)/2 =2α/2=α , диагонали ромба являются биссектрисами углов) . Из прямоугольного треугольника PBO (BP⊥(ABCD)⇒BP⊥ BO) по теореме Пифагора: PO =√(PB² +BO²) =√(p² +(c*cosα)²) .
АС=BD=√(16²+16²)=16·√2
Высота пирамиды H=SO, O- центр квадрата, точка пересечения диагоналей и одновременно центр описанной окружности, центр вписанной окружности.
По теореме Пифагора
H²=SO²=SA²-AO²=17²-(16√2/2)²=289-128=161
H=√161
V=(1/3)S(осн)·Н=(1/3)·16²·√161=256√161/3 куб. ед.
2) Центр окружности, описанной около прямоугольного треугольника - середина гипотенузы.
R=c/2
c²=1²+5²=26
R=(√26)/2
V(цилиндра)=S(осн.)·H=πR²·H=π·((√26)/2)²·(8/π)=52 куб. ед.