Модуль, это длина вектора. СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго. РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). Исходя из этого: 1) |AB+BC|=|AC|, то есть |AB+BC|= а. 2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3. |AB+AC|=а*√3. 3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1. |AB+CB|=а*√3. 4) |ВА-ВC|=|CA|=а. 5) |АВ-АC|=|CВ|=а.
1. ∠3 = ∠1 = 72° как вертикальные, ∠5 = ∠1 = 72° и ∠7 = ∠3 = 72° как соответственные при пересечении параллельных прямых а и b секущей с.
∠4 + ∠5 = 180° по свойству односторонних углов. ∠4 = 180° - ∠5 = 180°- 72° = 108° ∠2 = ∠4 = 108° как вертикальные, ∠8 = ∠4 = 108° и ∠6 = ∠2 = 108° как соответственные.
2. Обозначим один из односторонних углов х, тогда другой 1,5х. Сумма односторонних углов при пересечении параллельных прямых секущей равна 180°: x+ 1,5x = 180° 2,5x = 180° x = 180° / 2,5 = 72° 1,5 x = 108°
132,132,132,132,48,48,48,48
Объяснение: