Сделаем рисунок и соединим вершины С и D данных треугольников. Обозначим точку пересечения CD с АВ буквой Н. Рассмотрим ∆ CAD и ∆ CBD АС=СВ и AD=BD по условию; сторона СD- общая. ∆ CAD = ∆ CBD по 3-му признаку равенства треугольников. Тогда ∠АСD=∠BCD; ∠CDA=∠CDB. СD- биссектриса углов при вершинах С и D равнобедренных треугольников. По свойству равнобедренных треугольников биссектриса, проведенная к основанию, является еще и высотой и медианой. ⇒ СН и DН - медианы этих треугольников, а поскольку у них общее основание АВ, то CD проходит через середину АВ, ч.т.д.
Обозначим О - центр окружности; АВ - касательная; АС -секущая; СD - внутренний отрезок секущей (рисунок в приложении). По условиям задачи: АВ+АС=30 см AB-CD=2 Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: АВ²=АС*DA Выразим: AC=30-AB CD=AB-2 Пусть АВ=х см, тогда АС=30-х СD=x-2 АС=DA-DC=30-x-x+2=32-2x АВ²=АС*DA=(30-x)*(32-2x) x²=(30-x)*(32-2x) x²=960-32х-60х+2х² 2х²-х²-92х+960=0 х²-92х+960=0 D=b²-4ac=(-92)²-4*1*960=8464-3840=4624 (√4624=68) x₁=(-b+√D)/2a=(-(-92)+68)/2*1=160/2=80 - не соответствует условиям задачи x₂=(-b-√D)/2a=(-(-92)-68)/2*1=24/2=12 АВ=12 см АС=30-АВ=30-12=18 см ответ: касательная равна 12 см, секущая - 18 см.
Рассмотрим ∆ CAD и ∆ CBD
АС=СВ и AD=BD по условию; сторона СD- общая.
∆ CAD = ∆ CBD по 3-му признаку равенства треугольников.
Тогда ∠АСD=∠BCD;
∠CDA=∠CDB.
СD- биссектриса углов при вершинах С и D равнобедренных треугольников.
По свойству равнобедренных треугольников биссектриса, проведенная к основанию, является еще и высотой и медианой. ⇒
СН и DН - медианы этих треугольников, а поскольку у них общее основание АВ, то CD проходит через середину АВ, ч.т.д.