Длина этого прямоугольника по условию задачи 30+10=40 см Биссектриса прямого угла отсекает от прямоугольника равнобедренный треугольник с катетами, равными 30 см, так как она делит сторону на отрезки 30 см и 10 см, начиная от ближайшей до этого угла вершины.Получился прямоугольник с длиной 40 см и шириной 30 см.Диагональ можно найти, применив теорему Пифагора. d²=40²+30²= Но я считать не буду. Этот треугольник имеет катеты, отношение которых 3:4, поэтому он относится к "египетским" треугольникам, и гипотенуза его ( диагональ прямоугольника) пропорциональна этому отношению 3:4:5. Диагональ равна 50 см
Периметр равностороннего треугольника равен 24 (единиц измерения)
Объяснение:
Дано: △ABC - равносторонний. BD - медиана.BD=4√3
Найти: Периметр △ ABC
В равностороннем треугольнике все стороны равны. Обозначим сторону треугольника а.
Тогда AB=BC=CD=а.
Так как медиана треугольника делит сторону пополам, то AD=DC= a/2.
Медиана равнобедренного треугольника (а равносторонний треугольник - частный случай равнобедренного) является также высотой, следовательно BD⟂AC.
Рассмотрим прямоугольный треугольник BCD.
По теореме Пифагора:
BD²+DC²=BC²
a=8 (ед)
Таким образом, сторона равностороннего треугольника равна 8.
Периметр треугольника- это сумма всех его сторон. Значит:
Р(ABC)=3•a=3•8=24(ед)