составим уравнения прямых АВ и СД
1) Прямая АВ проходит через точки А (8; -3) и В(2; 5)
у = кх + в
Подставляем координаты точек А и В и получаем систему уравнений
-3 = к·8 + в
5 = к· 2 + в
вычтем из 1-го уравнения 2-е и найдём к
-8 = 6к ---> к = -4/3
Длина отрезка АВ равна
АВ = √[(2 - 8)² + (5 - (-3))²] = 10
Для противоположной стороны СД проделываем те же действия
у = кх + в
подставляем координаты точек С и Д
11 = к·10 + в
3 = к· 16 + в
вычитаем из 1-го уравнения 2-е
8 = -6к ---> к = -4/3
Длина отрезка СД равна
СД = √[(3 - 11)² + (16 - 10)²] = 10
Поскольку угловые коэффициенты (к = -4/3) одинаковые у прямых АВ и СД,
то АВ//СД (параллельны!)
Длины отрезков АВ и СД также одинаковы АВ = СД = 10
По известной теореме : Если две противоположные стороны четырехугольника равны и параллельны, то этот четырехугольник - параллелограмм, что и требовалось доказать
Проведем линию КМ, соединяющую середины оснований.
ВК=КС=6:2=3
АМ=МД=11:2=5,5
Опустим высоту КН, для того, чтобы из треугольника КНМ найти затем КМ.
Проведем КЕ параллельно АВ и КТ параллельно СД.
АЕ=ВК=ТД=КС=3
КЕ=ВА=3
КТ=СД=4
ЕТ=АД-АЕ-ТД=11-3-3=5
Получен треугольник КЕТ со сторонами 3,4,5.
Найдем площадь треугольника КЕТ по форуле Герона.
Вычисления приводить не буду, не в них смысл данного решения.
S КЕТ=6
Высоту КН треугольника КЕТ найдем из площади треугольника . S(КЕТ)=ЕТ*КН:2
КН=2S:ЕТ=12:5=2,4
По т. Пифагора из прямоугольного треугольника КНТ найдем НТ.
НТ равна 3,2 ( опять же не привожу вычисления - можно проверить).
НМ=НД-МД
МД=5,5 по условию.
НД=ТД+НТ=3+3,2=6,2
НМ=6,2-5,5=0,7
КМ найдем по т. Пифагора:
КМ²=КН²+МН²=2,4²+0,7²=6,25
КМ=√6,25=2,5 см