а) Обозначим за O - центр описанной окружности. Тогда OC=OB=OA как радиусы этой окружности. Из условия O - проекция точки S на плоскость основания, а значит ∠SOC=∠SOB=∠SOA=90°; Рассмотрим три прямоугольных треугольника: SOA, SOB, SOC: SO - их общая сторона, OA=OB=OC; Значит, они равны и, в частности, SA=SB=SC, что и требовалось.
б) Поскольку PQ параллельна плоскости основания и лежит в одной плоскости с CB, то она параллельна CB. Так как Q - середина SB, то PQ - средняя линия треугольника SCB. Отсюда следует, что площади треугольников SPQ и SCB относятся соответственно как 1:4 (4 - квадрат коэффициента подобия)
Теперь рассмотрим сами пирамиды. Пусть SPQ и SCB - их основания. Значит у этих пирамид относительно этого основания общая высота. Следовательно, объемы пирамид относятся как площади соответствующих оснований, т.е. 1:4.
Тебе дан равнобедренный треугольник, у равнобедренного треугольника 1 боковая сторона = второй, боковая сторона ас=12 см, значит св=12. Почему св= 12? Так как угол С 120 градусов, значит он больше 90 и его нужно указать вверху треугольника. Далее проводишь биссектрису CH. Чтобы найти биссектрису должен(а) записать соотношение AC/CH=CH/CB и выражаешь CH(так как записана 2 раза то у тебя получается квадрат биссектрисы). CH(в квадрате)=ас*св= 12*12=144 см(это бисстектр в квадрате) CH=12 см Так как CH биссектриса, то она делит угол на 2 равные части, то есть 120:2=60. Мы знаем, что биссектриса образовывает угол в 90 градусов, угол H= 90, найдем угол А. Сумма углов треугольника = 180, чтобы найти угол А надо из 180 вычесть 90 и 60= 30 градусам. Катет лежащий против угла в 30 градусов равен половине гипотенузы CH= 12:2 = 6 см
а) Обозначим за O - центр описанной окружности. Тогда OC=OB=OA как радиусы этой окружности. Из условия O - проекция точки S на плоскость основания, а значит ∠SOC=∠SOB=∠SOA=90°; Рассмотрим три прямоугольных треугольника: SOA, SOB, SOC: SO - их общая сторона, OA=OB=OC; Значит, они равны и, в частности, SA=SB=SC, что и требовалось.
б) Поскольку PQ параллельна плоскости основания и лежит в одной плоскости с CB, то она параллельна CB. Так как Q - середина SB, то PQ - средняя линия треугольника SCB. Отсюда следует, что площади треугольников SPQ и SCB относятся соответственно как 1:4 (4 - квадрат коэффициента подобия)
Теперь рассмотрим сами пирамиды. Пусть SPQ и SCB - их основания. Значит у этих пирамид относительно этого основания общая высота. Следовательно, объемы пирамид относятся как площади соответствующих оснований, т.е. 1:4.
Заметим, что 9²+(2√6)²=(√105)², значит, треугольник ABC - прямоугольный. Объем пирамиды SABC: V=SH/3=((9*2√6)/2)*10/3=30√6
Искомый объем в четыре раза меньше, т.е. равен (15√6)/2