1) Прямая КЕ и радиус, опущенный к точке К, образует прямой угол, выходит, что треугольник ЕОК прямоугольный и тогда сторону ОЕ можно найти с теоремы Пифагора. OE/2=OK2+KE/2=36+64=100; OE=10 2) радиусы ОА и ОС образуют прямые углы в треугольниках ВАО и ВСО, угол АОВ равен 60 градусов — угол АВО равен 30, катет лежащий напротив угла в 30 градусов, в два раза меньше гипотенузы, BO=2*AO=2*10=20
3) треугольники ЕКО и АКО - прямоугольные с острым углом 60 градусов. Это настолько очевидно, что даже не знаю, как объяснить:))) ну просто угол ЕОК равен половине КОF...
Отсюда немедленно следует ЕО = 2*ОК = 12; АО = (1/2)*ОК = 3; АЕ =9
Окружность = 360° 1) 5+4 =9 столько частей в этих 360° Меньшая дуга 360:9*4=40°*4=160° Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ). Вписанный угол АСВ равен половине центрального угла. 160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен 360°:9*5:2=100°. Но обычно имеется в виду острый угол. ------------ 2) 7+3=10 столько частей в двух дугах. 360°:10*3=108° содержит центральный угол КОМ ( второй рисунок) Вписанный угол МЕК равен половине градусной меры центрального угла. 108°:2=54° - под этим углом видна вторая хорда. (Или, если точка расположена по другую сторону хорды, 360:10*7:2=126°)
1) Прямая КЕ и радиус, опущенный к точке К, образует прямой угол, выходит, что треугольник ЕОК прямоугольный и тогда сторону ОЕ можно найти с теоремы Пифагора. OE/2=OK2+KE/2=36+64=100; OE=10 2) радиусы ОА и ОС образуют прямые углы в треугольниках ВАО и ВСО, угол АОВ равен 60 градусов — угол АВО равен 30, катет лежащий напротив угла в 30 градусов, в два раза меньше гипотенузы, BO=2*AO=2*10=20
3) треугольники ЕКО и АКО - прямоугольные с острым углом 60 градусов. Это настолько очевидно, что даже не знаю, как объяснить:))) ну просто угол ЕОК равен половине КОF...
Отсюда немедленно следует ЕО = 2*ОК = 12; АО = (1/2)*ОК = 3; АЕ =9