Обозначим точку пересечения прямых ВК и CD буквой Е. Тогда треугольники АВР и СРЕ подобны по двум углам: ∠АРВ = ∠ЕРС как вертикальные, а ∠РСЕ = ∠ВАР как накрест лежащие при параллельных АВ и CD и секущей АС. Из подобия этих треугольников:
СЕ/АВ = CP/AP = 16/11.
Но CD =АВ как противоположные стороны параллелограмма. Следовательно, DE = 16x - 11x = 5x.
Треугольники АВК и DEK подобны по двум углам: ∠DKE = ∠AKB как вертикальные, а ∠ABK = ∠DEK как накрест лежащие при параллельных АВ и CE и секущей ВЕ.
1. в планиметрии изучаются свойства фигур на плоскости (свойства плоских фигур), а в стереометрии — свойства фигур в пространстве (свойства пространственных фигур). геометрия - это отдел математики, в котором изучаются пространственные формы и законы их измерения. 2. прямая — это самая простая геометрическая фигура, которая не имеет ни начала, ни конца. Слова «не имеет ни начала, ни конца» говорят о том, что прямая бесконечна. Две прямые могут пересекаться только в одной точке. Через одну точку можно провести бесконечное множество прямых.
АК:DK = 11:5.
Объяснение:
Обозначим точку пересечения прямых ВК и CD буквой Е. Тогда треугольники АВР и СРЕ подобны по двум углам: ∠АРВ = ∠ЕРС как вертикальные, а ∠РСЕ = ∠ВАР как накрест лежащие при параллельных АВ и CD и секущей АС. Из подобия этих треугольников:
СЕ/АВ = CP/AP = 16/11.
Но CD =АВ как противоположные стороны параллелограмма. Следовательно, DE = 16x - 11x = 5x.
Треугольники АВК и DEK подобны по двум углам: ∠DKE = ∠AKB как вертикальные, а ∠ABK = ∠DEK как накрест лежащие при параллельных АВ и CE и секущей ВЕ.
Из подобия этих треугольников:
АК/KD = AB/DE = 11/5.