2. Прямаяlпересекает стороны угла ABC. Постройте точку, принадлежащую углу, равноудалённую от его сторон и находящуюся на расстоянии 2 см от прямой l. Сколько решений может иметь задача
Дан ΔАВС. Периметр Р(АВС)=14 см. Продолжим сторону АС треугольника АВС за точки А и С , получим прямую ДЕ. Проведём биссектрису АК угла ВАД, а также биссектрису СМ угла ВСЕ. ВК⊥АК и ВМ⊥СМ Продолжим высоты ВК и ВМ до пересечения с ДЕ. На ДЕ получим точки Д и Е. Так как АК и СМ - биссектрисы и высоты одновременно в ΔАВД и ΔВСЕ, то эти треугольники равнобедренные ⇒ АВ=АД и ВС=СЕ. Высоты АК и СМ в равнобедренных треугольниках АВД и ВСЕ являются ещё и медианами , значит точка К - середина ВД, а точка М - середина ВЕ. Рассм. ΔВЕД: КМ - средняя линия ΔВЕД. ДЕ=ДА+АС+СЕ=АВ+АС+ВС=Р(АВС)=14 см Средняя линия треугольника равна половине стороны, параллельно которой она проходит, то есть КМ=1/2*ДЕ=1/2*14=7 см.
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
Продолжим сторону АС треугольника АВС за точки А и С ,
получим прямую ДЕ.
Проведём биссектрису АК угла ВАД, а также биссектрису СМ угла ВСЕ.
ВК⊥АК и ВМ⊥СМ
Продолжим высоты ВК и ВМ до пересечения с ДЕ. На ДЕ получим
точки Д и Е.
Так как АК и СМ - биссектрисы и высоты одновременно в ΔАВД и ΔВСЕ, то эти треугольники равнобедренные ⇒
АВ=АД и ВС=СЕ.
Высоты АК и СМ в равнобедренных треугольниках АВД и ВСЕ являются ещё и медианами , значит точка К - середина ВД, а точка М - середина ВЕ.
Рассм. ΔВЕД: КМ - средняя линия ΔВЕД.
ДЕ=ДА+АС+СЕ=АВ+АС+ВС=Р(АВС)=14 см
Средняя линия треугольника равна половине стороны, параллельно которой она проходит, то есть
КМ=1/2*ДЕ=1/2*14=7 см.