Пусть в треугольнике ABC AB=10, BC=7, AC=5, AA1, BB1, CC1 - биссектрисы, I - их точка пересечения. Нужно найти отношение CI/IC1 (C - больший угол, так как он лежит против большей стороны AB). Найдем отрезок CC1. Он равен 10*5/12 (по свойству биссектрисы, AC/AC1=BC/BC1, или 5/AC1=7/BC1, тогда BC1/AC1=7/5, а BC1+AC1=AB=10). Рассмотрим треугольник ACC1. CI/IC1=AC/AC1=5/(50/12)=60/50=6/5. Таким образом, точка пересечения биссектрис делит биссектрису в отношении 6:5, считая от вершины.
8.1 Площадь равнобедренной трапеции равна: S=(a+b)/2*h, где a и b - основания трапеции (11 и 27) h - высота Отсюда, высота равна: h=S:(a+b)/2=2S:(a+b)=2*285:(11+27)=225:38=15 Т.е. BE (см. рисунок 1) = 15 AE=FD=(27-11):2=16:2=8 По теореме Пифагора: AB²=BE²+AE²=15²+8²=225+64=289 AB=√289=17 Боковая сторона трапеции равна 17. Т.к. трапеция равнобедренная, то боковые стороны равны: AB=CD=17 Периметр — это сумма боковых сторон и оснований, который равен: Р=11+27+17+17=72 ответ: периметр равен 72.
8.2. Найти высоту правильного треугольника, если радиус описанной около него окружности, равен 10 см.
R=10
т.к. ΔАВС - равносторонний, следовательно ∠А=∠В=∠С=60°
R=a/2sin60=a/√3
тогда a=R√3=10√3
h=√3/2*a=√3*a/2=√3*10√3/2=√9*10/2=3*10/2=15 ответ: высота правильного треугольника равна 15
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках Mи Nсоответственно. Найдите BN, если MN=13, AC=65, NC=28. Пусть х - длина ВN. Тогда, ВС=х+32 Составим и решим пропорцию: MN:AC=BN:BC 17/51=х/(х+32) (умножим на 51, чтобы избавиться от дроби) 17=51х/(х+32) 17*(x+32)=51x 17x+544=51x 17x-51x=-544 -34x=-544 34x=544 x=16 ответ: BN=16
1)два угла называются вертикальными,если стороны одного угла являются продолжениями сторон другого. вертикальные углы равны 2)два угла,у которых одна сторона общая,а две других являются продолжениями одна другой,называются смежными сумма смежных углов равна 180° 3)две пересекающиеся прямые называются перпендикулярными, если они образуют четыре прямых угла 4)равнобедренный,равносторонний, прямоугольный 5)катеты и гипотенуза 6)отрезок,соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника 7)перпендикуляр,проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника 8)медианы треугольника пересекаются в одной точке 9)не могу найти в учебнике 10)две прямые на плоскости называются параллельными , если они не пересекаются там много теорем мне лень писать
Пусть в треугольнике ABC AB=10, BC=7, AC=5, AA1, BB1, CC1 - биссектрисы, I - их точка пересечения. Нужно найти отношение CI/IC1 (C - больший угол, так как он лежит против большей стороны AB). Найдем отрезок CC1. Он равен 10*5/12 (по свойству биссектрисы, AC/AC1=BC/BC1, или 5/AC1=7/BC1, тогда BC1/AC1=7/5, а BC1+AC1=AB=10). Рассмотрим треугольник ACC1. CI/IC1=AC/AC1=5/(50/12)=60/50=6/5. Таким образом, точка пересечения биссектрис делит биссектрису в отношении 6:5, считая от вершины.