Из определения: прямая, параллельная плоскости, не имеет общих с плоскостью точек. Отсюда следует: (1) a||b или (2) у a и b нет общих точек (скрещивающиеся). Докажем (2), а заодно и опровергнем возможность пересечения.
Пусть a пересекает b, значит существует общая для a и b точка B, являющаяся точкой пересечения прямых. b лежит на плоскости, значит каждая точка, принадлежащая b, пренадлежит плоскости Альфа (в частности В). Следовательно у a и Альфа есть общая точка B, значит a не параллельна плоскости Альфа по определению. Противоречие. Доказано - a не пересекает b.
Длина дуги равна π см.
Объяснение:
По формуле длины дуги окружности: l=α*r (*). Здесь r=12 см. α - измеряется в радианах. Переведем 15° в радианы.
Подставим в формулу (*) известные величины.
l=π см.