М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Asherok
Asherok
11.10.2022 22:14 •  Геометрия

Дано ΔMNP, де M(4; 1), N(2; -3), P(-2; -1). Побудувати ΔM1N1P1,

симетричний ΔMNP відносно початку координат та вказати координати точок

M1, N1, P1.​

👇
Открыть все ответы
Ответ:
ботан777
ботан777
11.10.2022

В этой задаче только одна тонкость - 140 градусов - это угол при вершине. Поэтому угол при основании равен Ф = (180 - 140)/2 = 20 градусов (или пи/9). 

Осталось вспомнить теорему синусов 2*R*sin(Ф) = a; а = 10;

R = 5/sin(пи/9); само собой, это можно вычислить только приближенно (если только учитель не садист :) но в любом случае, это за пределами всех школьных программ)

R = 5/0,342020143325669 = 14,6190220008154; (слава Гейтсу, есть Excel)

 

Вот, чего только не узнаешь, ковыряясь в тривиальных задачах. Оказывается, тригонометрические функции угла 20 градусов теоретически невозможно выразить в радикалах. Оказывается, это противоречит некоей теореме Гаусса, согласно которой  с циркуля и линейки можно построить не любой правильный n-угольник, а только для некоторых n, и 18-угольники в это разрешенное множество не входят. В частности, можно выразить в радикалах функции всех углов, кратных 3 градусам. 

Однако это не означает, что cos(пи/9) (или синус, не важно) нельзя "вычислить на кончике пера". Легко видеть, что 

cos(60) = 4*(cos(20))^3 - 3*cos(20); если x = cos(20); то

x^3 - (3/4)*x - 1/8 = 0;

У этого уравнение есть по крайней мере один действительный корень (равный косинусу 20 градусов, конечно). Есть формулы Кардано для решения в радикалах таких уравнений. Но - вот беда - результат, хоть и действительный, и будет выражен в радикалах, обязательно будет содержать внутри записи мнимую единицу i; i^2 = -1; и избавиться от неё в выражении никак не получится (в противном случае нарушилась бы та самая теорема Гаусса). : это я так - развлекаюсь :)))

4,8(55 оценок)
Ответ:
SABA30031
SABA30031
11.10.2022

В этой задаче только одна тонкость - 140 градусов - это угол при вершине. Поэтому угол при основании равен Ф = (180 - 140)/2 = 20 градусов (или пи/9). 

Осталось вспомнить теорему синусов 2*R*sin(Ф) = a; а = 10;

R = 5/sin(пи/9); само собой, это можно вычислить только приближенно (если только учитель не садист :) но в любом случае, это за пределами всех школьных программ)

R = 5/0,342020143325669 = 14,6190220008154; (слава Гейтсу, есть Excel)

 

Вот, чего только не узнаешь, ковыряясь в тривиальных задачах. Оказывается, тригонометрические функции угла 20 градусов теоретически невозможно выразить в радикалах. Оказывается, это противоречит некоей теореме Гаусса, согласно которой  с циркуля и линейки можно построить не любой правильный n-угольник, а только для некоторых n, и 18-угольники в это разрешенное множество не входят. В частности, можно выразить в радикалах функции всех углов, кратных 3 градусам. 

Однако это не означает, что cos(пи/9) (или синус, не важно) нельзя "вычислить на кончике пера". Легко видеть, что 

cos(60) = 4*(cos(20))^3 - 3*cos(20); если x = cos(20); то

x^3 - (3/4)*x - 1/8 = 0;

У этого уравнение есть по крайней мере один действительный корень (равный косинусу 20 градусов, конечно). Есть формулы Кардано для решения в радикалах таких уравнений. Но - вот беда - результат, хоть и действительный, и будет выражен в радикалах, обязательно будет содержать внутри записи мнимую единицу i; i^2 = -1; и избавиться от неё в выражении никак не получится (в противном случае нарушилась бы та самая теорема Гаусса). : это я так - развлекаюсь :)))

4,8(34 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ